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Appendix A: Detailed methodology

State-space model
This appendix presents the state-space model used in the 
paper and discusses the Markov chain Monte Carlo (MCMC) 
algorithm applied to estimate the state variables. 

The notations used in this paper are as follows: 

•       is Australian GDP growth rate in quarter t (t ∈[1,…,T]).

•      is the quarterly GSP growth rate for region r (r ∈[1,…,R])
in quarter t, with R = 8.

•        is the annual GSP growth rate for region r in quarter t,
which is observed in quarter 4 of each year.

Our MF-VAR model is a state-space model with the observed 
national quarterly GDP and unobserved regional quarterly 
GSP. The state equation of this state-space model is a VAR 
model given as:

y� = Φ₀ + Φ₁y �–₁ +⋯+ Φ� y�–�)+ 𝒖�, (A.1)

where 𝒚𝒚𝑡𝑡 = (𝑦𝑦𝑡𝑡𝐴𝐴𝐴𝐴, 𝑦𝑦𝑡𝑡1, … , 𝑦𝑦𝑡𝑡𝑅𝑅)′  is a R + 1 vector, and the random
term 𝒖� follows �(0,Σ�). The intercept Φ₀ is a R + 1 vector and 
the coefficient matrices Φ₁, ... Φ� are all (R + 1) x (R + 1) 

To improve modelling performance, this VAR model is 
expanded to include four additional macroeconomic 
indicators: the official cash rate, trade-weighted exchange 
rate, consumer price, and commodity prices, with the latter 
three indicators entering the model in first difference 
of logarithm. State final demand for each state are also 
included. That is, 𝒚𝒚𝑡𝑡 = (𝑦𝑦𝑡𝑡1, … , 𝑦𝑦𝑡𝑡𝑛𝑛)′   with n = 2R + 5. 

Earlier literatures (Mitchell et al. 2005, Mariano and 
Murasawa 2010) suggested a linear approximate relationship 
between the annual GSP growth and quarterly GSP growth:
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It provides the measurement equations in our state-space 
model with observed annual growth on the left-hand side 
and unobserved quarterly growth on the right hand side for 
each region. Another measurement equation is obtained from 
the cross-sectional restriction that Australian quarterly GDP 
growth is the weighted sum of quarterly GSP growth across 
all the states and territories: 

𝑦𝑦𝑡𝑡
𝐴𝐴𝐴𝐴 = ∑ 𝑤𝑤𝑟𝑟,𝑡𝑡 𝑦𝑦𝑡𝑡

𝑟𝑟𝑅𝑅
𝑟𝑟=1 + 𝜂𝜂𝑡𝑡, (A.3)

where wᵣₜ is set as the region’s share of national GSP in the 
previous year and 𝜂𝜂𝑡𝑡~𝑁𝑁(0, 𝜎𝜎𝜂𝜂2).  

In most mixed-frequency VAR literature, the covariance 
matrix Σ� is assumed to be invariant with time. However, there 
is evidene of change in volatility in empirical macroeconomic 
applications. Therefore, we follow a multivariate stochastic 
volatility specification adopted by Koop et al. (2020). The 
covariance matrix can be decomposed as follows:

Σ� = L'DₜL, (A.4)

where L is a n 𝗑 n lower triangular matrix with a diagonal 
of ones and other non-zero elements defined in a vector 

𝒂𝒂 = (𝑎𝑎1, . . . , 𝑎𝑎(𝑛𝑛−1)𝑛𝑛
2

) ′. . 

The diagonal matrix D� = diag[exp(h₁,�), … , exp(hₙ,�)] and
the log-volatilities 𝒉ₜ = (h₁,�, … , hₙ,�)]' follows a random walk
defined as:

𝒉ₜ = 𝒉ₜ–₁ + 𝑣� , 𝑣�~ �(0,Σh), (A.5)

where Σℎ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝜔𝜔ℎ1
2 , … , 𝜔𝜔ℎ𝑛𝑛

2 ]   is a time-invariant diagonal
matrix.v

Priors and posteriors
The goal of our model is to produce posterior and predictive 
densities for these unobserved quarterly GSP growth and 
use posterior means as point estimates of these growth rates 
and densities to produce credible intervals. Bayesian Markov 
chain Monte Carlo (MCMC) algorithms that combine Bayesian 
state-space methods with Bayesian VAR methods are used to 
estimate our model. 

The MF-VAR model defined above is obviously 
overparametrized with n dependent variables and their 
� lags. In addition, the multivariate stochastic volatility 
process (A.1) involves more parameters to be estimated 
(𝒂 and 𝒉ₜ). To avoid such overparametrisation, we follow 
Bhattacharya et al. (2015) and use Direchlet-Laplace 
shrinkage to define priors for all the coefficients in our model. 

If we pool all elements of coefficient matrices (Φ₀, ... Φ�) 
together and reshape them into a single vector ϕ = (ϕ₁, ... ϕₖ)', 
where 𝑘 = n2�+n. The prior for each coefficient is independent 
and takes the form: 

𝜙𝜙𝑗𝑗 ~ 𝑁𝑁(0, 𝜓𝜓𝑗𝑗
𝜙𝜙𝜗𝜗𝑗𝑗𝑗𝑗

2 𝜏𝜏𝜙𝜙
2 ), (A.6)

where the variance involves a local term 𝜓𝜓𝑗𝑗
𝜙𝜙~ exp (1

2),   a global 
term 𝜏𝜏𝜙𝜙2~𝐺𝐺 (𝜅𝜅𝛼𝛼𝜙𝜙,

1
2)   and an extra term 𝜗𝜗𝑗𝑗𝑗𝑗2 ~𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼𝜙𝜙,… , 𝛼𝛼𝜙𝜙)  . This 

prior leads to a posterior that contracts to the true value 
at a rate that is optimal in theory. This prior would shrink 
the estimate of ϕ� towards the prior mean of zero relative to 
maximum likelihood estimate (MLE). This prior involves only 
one prior hyperparameter 𝑎ϕ, making the prior elicitation 
simple. Bhattacharya et al. (2015) recommended setting it 
to 

1
2   and Koop et al. (2020) approved the selection of prior is 

reasonably robust. 

In addition, we also apply the Dirichlet-Laplace shrinkage 
to the coefficients in L in equation (A.4). The unknown 
parameters in log-volatilities is assumed to follow inverse 
gamma distribution:

𝜔𝜔ℎ𝑗𝑗
2  ~ 𝐼𝐼𝐼𝐼(𝜐𝜐ℎ𝑗𝑗, 𝑆𝑆ℎ𝑗𝑗), for 𝑗𝑗 = 1, … , 𝑛𝑛. for 𝜔𝜔ℎ𝑗𝑗

2 ~ 𝐼𝐼𝐼𝐼(𝜐𝜐ℎ𝑗𝑗, 𝑆𝑆ℎ𝑗𝑗), for 𝑗𝑗 = 1, … , 𝑛𝑛. (A.7)

The posterior simulation algorithm related to the 
Dirichlet‑Laplace prior is derived in Bhattacharya et al. (2015). 
Given the draws of state variables, the conditional posterior 
for the VAR coefficients takes the following form: 

𝜙𝜙| ⋅ ~𝑁𝑁(𝜙̂𝜙,𝑲𝑲𝜙𝜙
−1), (A.8)

𝑦𝑦𝑡𝑡𝐴𝐴𝐴𝐴   

𝑦𝑦𝑡𝑡𝑟𝑟   

𝑦𝑦𝑡𝑡𝑟𝑟,𝐴𝐴  
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where 𝑲𝑲𝝋𝝋 = 𝑿𝑿′𝚺𝚺−𝟏𝟏𝑿𝑿 + 𝑺𝑺𝝓𝝓−𝟏𝟏,   and 𝜙̂𝜙 = 𝑲𝑲𝜙𝜙
−1(𝑿𝑿′𝚺𝚺−𝟏𝟏𝒚𝒚),  with X = [X₁,…, X�]

and X� = Iₙ⨂[1, y'ₜ–₁,…, y'ₜ–ₚ]. The second term in Kᵩ is diagonal,
defined as 𝑺𝑺𝝓𝝓 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜓𝜓1

𝜙𝜙𝜗𝜗1𝜙𝜙2 𝜏𝜏𝜙𝜙2 , … , 𝜓𝜓𝑘𝑘
𝜙𝜙𝜗𝜗𝑘𝑘𝑘𝑘2 𝜏𝜏𝜙𝜙2 ). . The conditional

posterior distributions for 𝜓𝜓𝑗𝑗
𝜙𝜙, 𝜗𝜗𝑗𝑗𝑗𝑗 and 𝜏𝜏𝜙𝜙    are:

         (A.9)

with Rⱼ𝜙 |.~GIG(α𝜙 –1, 1 ,2|ϕⱼ |), for j=1, …, k. GIG is the generalised 
inverse Gaussian distribution and iG is the inverse Gaussian 
distribution. 

Similiarly, the posterior for a is given as

𝒂𝒂 |. ~𝑁𝑁(𝒂𝒂 ̂, 𝑲𝑲𝒂𝒂 
−1) (A.10)

where 𝑲𝑲𝒂𝒂 = 𝑬𝑬′𝑫𝑫−𝟏𝟏𝑬𝑬 + 𝑺𝑺𝒂𝒂−𝟏𝟏,  and 𝒂̂𝒂 = 𝑲𝑲𝒂𝒂
−1(𝑬𝑬′𝐃𝐃−𝟏𝟏𝝐𝝐),  

with D = diag{D1,…,DT}. The detailed definition of matrix 
E and conditional posteriors for 𝑺𝑺𝒂𝒂   can be found in
Koop et al. (2020). 

For the stochastic volatility D� , we draw the initial 
condition h0 following Chan and Eisenstat (2018) and
its conditional posterior is:

𝒉𝒉0|. ~ 𝑁𝑁(𝒉̂𝒉0, 𝑲𝑲𝒉𝒉0
−1)  , where 𝑲𝑲𝒉𝒉0= 𝑽𝑽𝒉𝒉

−1 + Σ𝒉𝒉−1, and
𝒉̂𝒉0 = 𝑲𝑲𝒉𝒉0

−1(𝑽𝑽𝒉𝒉
−1𝒂𝒂𝒉𝒉 + Σ𝒉𝒉−1𝒉𝒉1). . A.11)

The diagonal elements of Σₕ are conditionally independent 
and follow:  

𝜔𝜔ℎ𝑗𝑗
2 |. ~ 𝐼𝐼𝐼𝐼 (𝜈𝜈ℎ𝑗𝑗 + 𝑇𝑇

2 ,   𝑆𝑆ℎ𝑗𝑗 + 1
2 ∑ (ℎ𝑗𝑗𝑗𝑗 − ℎ𝑗𝑗,𝑡𝑡−1)2𝑇𝑇

𝑡𝑡=1 )  for 𝑗𝑗 = 1, … , 𝑛𝑛.  for  j = 1, ..., 𝑛.      (A.12)




