Estimating quarterly gross state product

Appendix A: Detailed methodology

State-space model

This appendix presents the state-space model used in the
paper and discusses the Markov chain Monte Carlo (MCMC)
algorithm applied to estimate the state variables.

The notations used in this paper are as follows:

e y#is Australian GDP growth rate in quarter ¢t (t €[1,..., T]).

eyl isthe quarterly GSP growth rate for region r (r €[1,..,R])
in quarter t, with R=8.

e ¥"isthe annual GSP growth rate for region rin quarter t,
which is observed in quarter 4 of each year.

Our MF-VAR model is a state-space model with the observed
national quarterly GDP and unobserved regional quarterly
GSP. The state equation of this state-space model is a VAR
model given as:

V=P + Pyt Ppyp)tuy, (A1)

where ¥¢ = @AY, v, ..., ¥8)" is a R+ 1 vector, and the random
term u, follows N(0,%,). The intercept @, is a R+ 1 vector and
the coefficient matrices @y, .. &, areall (R+1) x (R+ 1)

To improve modelling performance, this VAR model is
expanded to include four additional macroeconomic
indicators: the official cash rate, trade-weighted exchange
rate, consumer price, and commodity prices, with the latter
three indicators entering the model in first difference

of logarithm. State final demand for each state are also
included. Thatis, y, = (3¢, ...,y with n=2R + 5.

Earlier literatures (Mitchell et al. 2005, Mariano and
Murasawa 2010) suggested a linear approximate relationship
between the annual GSP growth and quarterly GSP growth:
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(A2)

It provides the measurement equations in our state-space
model with observed annual growth on the left-hand side
and unobserved quarterly growth on the right hand side for
each region. Another measurement equation is obtained from
the cross-sectional restriction that Australian quarterly GDP
growth is the weighted sum of quarterly GSP growth across
all the states and territories:

)’tAU = 25=1 Wyt Vi + 1 (A.3)

where wy, is set as the region’s share of national GSP in the
previous year and n,~N(0,02).

In most mixed-frequency VAR literature, the covariance
matrix X, is assumed to be invariant with time. However, there
is evidene of change in volatility in empirical macroeconomic
applications. Therefore, we follow a multivariate stochastic
volatility specification adopted by Koop et al. (2020). The
covariance matrix can be decomposed as follows:

X =L'DL, (A4)

where L is a nx n lower triangular matrix with a diagonal
of ones and other non-zero elements defined in a vector

a=\a;...,am-on )"
2

The diagonal matrix D, = diag[exp(ha,c), ..., exp(hn,)] and
the log-volatilities he = (ha,, ..., hn,e)]' follows a random walk
defined as:

h;=h;_;1 +v., v~ N(0,Z), (A5)

where ¥, = diag[w?, ..., w%,] is a time-invariant diagonal
matrix.v

Priors and posteriors

The goal of our model is to produce posterior and predictive
densities for these unobserved quarterly GSP growth and

use posterior means as point estimates of these growth rates
and densities to produce credible intervals. Bayesian Markov
chain Monte Carlo (MCMC) algorithms that combine Bayesian
state-space methods with Bayesian VAR methods are used to
estimate our model.

The MF-VAR model defined above is obviously
overparametrized with n dependent variables and their

p lags. In addition, the multivariate stochastic volatility
process (A1) involves more parameters to be estimated

(a and h). To avoid such overparametrisation, we follow
Bhattacharya et al. (2015) and use Direchlet-Laplace
shrinkage to define priors for all the coefficients in our model.

If we pool all elements of coefficient matrices (®o, ... ®,)
together and reshape them into a single vector ¢ = (¢4, ... ¢x)
where k = n2p+n. The prior for each coefficient is independent
and takes the form:

¢ ~ (0.9} 0jy75),

where the variance involves a local term ¥f~ex (3), a global
term t4~G (Ka,;,,%) and an extra term ¥9%~Dir(ag, ... a). This
prior leads to a posterior that contracts to the true value

at a rate that is optimal in theory. This prior would shrink
the estimate of ¢; towards the prior mean of zero relative to
maximum likelihood estimate (MLE). This prior involves only
one prior hyperparameter ay, making the prior elicitation
sirrlwple. Bhattacharya et al. (2015) recommended setting it
to ; and Koop et al. (2020) approved the selection of prior is
reasonably robust.

(A.6)

In addition, we also apply the Dirichlet-Laplace shrinkage
to the coefficients in L in equation (A.4). The unknown
parameters in log-volatilities is assumed to follow inverse
gamma distribution:

(J)pzlj ~ IG(U;U-,SM-), for j=1,..,n (A7)

The posterior simulation algorithm related to the
Dirichlet-Laplace prior is derived in Bhattacharya et al. (2015).
Given the draws of state variables, the conditional posterior
for the VAR coefficients takes the following form:

®l-~N($,K5"), (A8)
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where K, = X'E71X + S5, and ¢ = Kz'(X'z7y), with X = [Xy,..., Xq]
and X, = I,®[1,y't-1,... ¥ 't—p)- The second term in K,, is diagonal,
defined as S, = diag(zpfﬁlzd,ré, ...,w,‘fﬁ,§¢ré), The conditional
posterior distributions for %¢,9;, and 7, are:

L VieTe)
|-~ iG((—25, 1);

5]
ol ~ GIG(Hays — 1,125, 121, (A9)

Vi
R;
Vjo =
TR

with Ry |.~GIG(ay-1, 1,2|¢; |), for j=1, .., k. GIG is the generalised
inverse Gaussian distribution and iG is the inverse Gaussian
distribution.

Similiarly, the posterior for a is given as
al.~N(@,K;") (A10)

where K, = E'D7E + 8,1, and @ = K;'(E'D 'e),
with D = diag{D;,..,Dz}. The detailed definition of matrix
E and conditional posteriors for §, can be found in
Koop et al. (2020).

For the stochastic volatility D, , we draw the initial
condition h, following Chan and Eisenstat (2018) and
its conditional posterior is:

hol.~ N(Ro, K3!), where Ky, = Vi + 237, and
ho = K;!(Vitay + 23 hy). A1)

The diagonal elements of ¥, are conditionally independent
and follow:

T 1 2
W |~ 16 (vig + 5, Suy+ S X (b = hies)’) for j=1,.n. (AT2)
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